
 Developer’s Guide on Reconciliation
Project

Developed By: Daryl Bullock

Date: 14 November 2001

Table of Contents

Section 1 Project Summary...ii

Section 2 General Information
1.1 Database Used for Application..1
1.1 Database Version...1
1.1 Operating System...1
1.1 Server Name(s)..1
1.1 Forms and Reports Versions..1
1.1 Test and Production Database Names......................................1
1.1 Indexes...1
1.1 Data Entry Form Procedure

Section 3 Form Procedures
2.1 Southeast Trip Totals...1
2.2 All Records..2
2.3 All Records By Boat..2

Section 4 Reconciliation Data Entry Forms Operating Instructions
3.1 Southeast Trip Data Entry Form...3
3.2 Southeast Trip Totals..5
3.3 Reconciliation Form..6
3.4 Meta Data..8
3.5 Reconciliation All Records...9
3.6 Reconciliation By Vessel..10

Section 5 Reports
4.1 Trip Comparison..11

Appendix A Entity Relationship Diagram..12

Appendix B PL/SQL Coding
 Trip Total...13
 All Records..14
 All Records By Vessel...15

Appendix C Monthly Script Processing...17

Contents i

Reconciliation Summary

The reconciliation project compares highly migratory species trip data stored in the NMFS Southeast
Science Center (SEFSC) to dealer trip data stored in the NMFS Northeast Science Center (NEFSC).
This project will also compare SEFSC to data stored in the database of the Atlantic Coastal Cooperative
Statistics Program (ACCSP), which stores the Florida and North Carolina data. The ultimate goal of the
reconciliation project is to ensure vessel trip data is accurate and complete between the state, NMFS and
ACCSP agencies. The reconciliation application will perform data comparisons between southeast and
northeast data centers. Then North Carolina and Florida data in the ACCSP database to data in the
southeast database. Those comparisons are then stored in tables on the NMFS database, shark, in a
reconciliation table and a log file table. The reconciliation system will also help to identify records known
as split trips. These are trips where the fisherman sells a portion of his trip in one state and the other
portion of his trip in another state. This system will help to identify duplicated data between state and
federal agencies, data reported in one system, but not another and also help to identify discrepancies in
records, such as landed weights, species landed, state landed or gears used.

Summary ii

General Information

Database: Oracle

Database Version: 8i Release 8.1.7.0.0

Operating System: Sun Solaris 5.6

Name of Server: Urchin

Forms Version: 4.0 (Client Server) 6i (Internet)

Reports Version: 2.5 (Client Server) 6i (Internet)

Tables Involved: See Appendix A (ERD)

Test Database: Urchin

Production Database: Shark (scripts and tables storage)

Indexes/Table_Type: I_Nmfs_Cd_Log_Dt_State_Cd - Se_Ne_Recon_T - Normal

Pl/Sql Procedures: Within the Reconciliation data entry forms, there are 3 procedures: Data_In,
which produces the inform
ation displayed in the SE
Trip Totals screen.

1

The Recon_All_Dat
a_In produces the
infor mation displayed
in the Reconciliation All
Reco rds screen

and
All _Data_In_
By boat
disp lays the
info rmation in
the Reconciliatio
n By Vessel
scre en.

Note - See Appendix B for PL/SQL coding. 2

Reconciliation Data Entry Forms Operating Instructions

The following are operating instructions on the use of the data entry reconciliation form. Upon entering
the url: http://urchin.ssp.nmfs.gov:8000/dev60html/serecon.htm, a Oracle Forms and Reports
Server page with a hotlink of Longline Data Entry Form will appear. Clicking on this link will cause
the loading of a java applet necessary to run Oracle forms. Then a page which asks for a userid,
password and database name appears. After entering the appropriate data, the first form appears,
Southeast Trip Data Entry Form.

Note: Userid and passwords can be obtained from Daryl Bullock - F/ST1

Southeast Trip Data Entry Form

T h e f o r m
i s linked
to the south
e a s t dls_d
omesti c_lon
g l i n e table.
T h i s table
stores d a t a
f r o m weigh
o u t sheet
information. Upon opening the form, its immediate mode of operation is in data entry mode. Therefore
at this point, records can be entered into the system.

3

Entering a record into the database:

A record is entered into the dls_longline table by SEFSC personnel. A record consist of trip, state, date,
species along with individual weights. Enter the appropriate data in each field and press the tab or enter
key on your keyboard or mouse click in each field in order to move to the next field. When entering a
state code, the appropriate state name will automatically appear. When entering a species code, the
species name will automatically appear. Enter individual weight values. When all values are entered, hit
the down arrow key to commit the record to the database and enter the next record.

Querying records in the database:

The Southeast Trip Data Entry Form can search records in the dls_domestic_longline according to a
specified criteria. In order to search all records in the database, mouse click on the Enter Query button
and immediately hit the Execute Query button. This will display all records in the database. In order to
view each record, press the down arrow key on your keyboard. If there is a particular search criteria that
is used, ie a trip number, the query will display all the data for a particular trip number.

FYI: If you wish to query a record and have already started entering the search criteria,
 but realize the form is in insert mode, press the Enter Query button. A forms
prompt box will appear, asking, “Do you want to save the changes you have
made?” Answer “No” to this box so that the form will not save erroneous data to
the database. The form should now be in query mode and you can enter your search
criteria.

 Hint: Also, a hint that you are in query mode, you will see a Cancel Query label on one
 of the buttons. If you are in insert mode, that same button will change labels and
 read, Exit Form.

Deleting a record from the database:

Deletion can only be accomplished one record at a time. Each record contains a maximum of 32 weights.
To delete a record from the dls_domestic_longline database, the authorized person must first query the
record for deletion. Once that record is displayed, hit the Delete Record button. A forms prompt will
appear asking, “Are you sure you want to delete this record?” If this is the correct record marked for
deletion, answer “Yes” to this box. This record is now deleted from the database. If you are completely
finished with all necessary modifications, additions or deletions, click the Exit Form button.

4

Updating a record in the database:

To update a record, first query the record. Once that record is displayed, change the data needing the
update and press the down arrow key. This record is automatically updated.

If you wish to see species totals by trip, click the Trip Totals Screen button.

Southeast Trip Totals Screen

Note: This screen is query only mode. Records can not be edited.

The purpose of this screen is to display the species totals per trip. This screen shows the vessel
identification number, state landed for a trip, the log or landing date, the gear used on that trip and all the
species with their totals that were landed on that trip.

Querying trip totals:

To query trip totals on this screen, enter the trip number in the appropriate field and press the tab key
and the species code, species name and species totals are displayed.

5

Clear Screen button will clear any data from the screen and allow the entry of another trip number.

Previous Screen button returns the user to the Southeast Trip Data Entry Screen. The last record
displayed on that screen will remain on that screen, until the clear screen or enter query buttons is pressed.

Reconciliation Data Entry Screen

The purpose of this form is to display records that have gone through the matching process of merging
records from the southeast and northeast databases according to landing dates, species and vessel
identification. From this, the southeast trip number, southeast vessel id, northeast hull numbers, state of
landing, landing date(log_date) and the date the records were matched and added to reconciled table.

6

Querying records:

Querying reconciled (matched) records is done in the same manner as before. To query the entire
database, press the Enter Query button and then Execute Query button. To use a particular search
criteria, enter the criteria in the appropriate field, ie a particular trip number or vessel identification or hull
number. Another example, to find all records that matched exactly, press the enter query button, place
a “1" in the match results field and hit Execute Query. To query records where the data originated from
the northeast, place a “2" in the data source field and then execute query.

Updating a record:

To update a record, query that record and then make the necessary change and hit the Commit Record
button . The changes are then updated in the database.

Deleting a record:

To remove a record from the database, query the record and then press the Delete Record button. The
forms prompt will ask, “Are you sure you want to delete this record?” Answer the prompt
accordingly.

To view matched records that had discrepancies such a weight difference, the larger of the two weights is
place in the reconciliation table and the lower weight is placed in the meta data table. Unmatched trips are
identified as match_result = “3.” To view changes or deletions made to the reconciliation table, press the
Meta Data Screen button.

7

Recon Meta Data Record Screen

This screen displays all records that had some type of discrepancy with records in the reconciled table such
as the weight. The rule for reconciliation is that the larger value is accepted in the reconciled table and the
smaller value is added to the meta data table. Also, if an update is made to the reconciled table, the meta
data table stores the previous value and the current value in order to track all transactions to a record
including changes to trip header variables as well as deleted unmatched records.

Note: Only the comments field can be modified.

Querying records:

Records are queried in the same manner as before. To query the entire database, press the Enter Query
button and then press the Execute Query button. To query particular records, enter the search criteria
and press execute query.

8

The Previous Screen button will return the user to the Reconciliation Data Entry Form.

T h e Display All
Record s button brings
u p a screen tha t
displays all records that
e i t h e r had a landed
weight discrepancy or
do not h a v e a
matchin g record in the
reconcil ed table.

To Query records from this screen, enter the year to view and hit the tab-key or click on the first record
of the data source field. All records in the reconciled table are then displayed. Any records having a
landings weight discrepancy between the southeast and northeast record, a difference in the weight values
is displayed. This screen also allows the user to view all records in a given year and look up whether a
record has a possible split trip causing incorrect weight values or incorrectly identified species.

9

T h e
Q u e
r y
B y
Boat
butto
n
bring
s up
a
scree
n that
displ
a y s

all records by year and southeast vessel identification number. This screen is similar to the All Records
Screen.

To query records, enter the year in the appropriate field then hit the tab key and enter the southeast vessel
number and then hit the tab key or mouse click into the data source field. The query will result in all
records pertaining to that vessel. Weight discrepancies and differences are displayed, along with any
vessels not having a matching record from the southeast or northeast. This screen also allows the user to
view vessel landings in a given year that may have a split trips. This screen may help to identify incorrect
landing dates or incorrect vessel identification numbers.

10

Reconciliation Reports

The Highly Migratory Trip Comparison report lists all species landed on each trip, per state, along with the
comparison of southeast and northeast landings per species and any weight differences. This report
provides a complete list of all trips included in each database by state, species and dates. Unmatched trips
are those that lack either a southeast vessel identification number or northeast hull number variable. These
trips can then be quickly compared against values listed in the difference columns. This will help to resolve
discrepancies attributed to split trips.

This Highly Migratory Trip Comparison report displays all records from all states and lists all landings
per species landed on each trip within each state by date.

1
Appendix B Procedures

Southeast Trip Total Procedure

PROCEDURE DATA_IN(trip_number IN VARCHAR2) IS
 CURSOR curs1 IS
 SELECT trip_number, a.species_code, common_name, sum(nvl(weight1,0) + nvl(weight2,0) +

 nvl(weight3,0) + nvl(weight4,0) + nvl(weight5,0) + nvl(weight6,0) +
 nvl(weight7,0) + nvl(weight8,0) + nvl(weight9,0) + nvl(weight10,0) +
 nvl(weight11,0) + nvl(weight12,0) + nvl(weight13,0) + nvl(weight14,0) +
 nvl(weight15,0) + nvl(weight16,0) + nvl(weight17,0) + nvl(weight18,0) +

 nvl(weight19,0) + nvl(weight20,0) + nvl(weight21,0) + nvl(weight22,0) +
 nvl(weight23,0) + nvl(weight24,0) + nvl(weight25,0) + nvl(weight26,0) +
 nvl(weight27,0) + nvl(weight28,0) + nvl(weight29,0) + nvl(weight30,0) +
 nvl(weight31,0) + nvl(weight32,0)) wts

 FROM dls_longline a, dls_species_code b
 WHERE a.species_code = b.dls_species_code AND
 trip_number = :longline_tot.trip_number
 GROUP BY trip_number, a.species_code, common_name;

BEGIN
 OPEN curs1;
 LOOP

FETCH curs1 INTO :species_tots.trip_number, :species_tots.species_code,
 :species_tots.species_name, :species_tots.weight_tot;

IF curs1%NOTFOUND THEN
 NULL;

ELSE
 NEXT_RECORD;

END IF;
 EXIT WHEN curs1%NOTFOUND;
 END LOOP;
 CLOSE curs1;
 END data_in;

13

Reconciliation All Records Procedure

PROCEDURE recon_all_data_in(year IN VARCHAR2) IS
 CURSOR curs1 IS
 SELECT data_source, se_vessel_id, ne_hullnum, state_code, landing_date, s

species_code, species_name, pounds, se_trip_number, accsp_rec_num,
match_results

 FROM recon_se_ne
 WHERE substr(landing_date,1,4) = :recon_se_ne2.year AND match_results IN ('2','3')
 ORDER BY landing_date, se_vessel_id, species_name;

 CURSOR se_curs IS
 SELECT data_source, se_vessel_id, ne_hullnum, state_code, landing_date, species_code,
 species_name, pounds, se_trip_number, accsp_rec_num, match_results
 FROM recon_se_ne
 WHERE substr(landing_date,1,4) = :recon_se_ne2.year AND match_results IN ('2','3') AND

 species_code in ('ALB','470','BET','469','BLF','464','BON','033','DOL','105',
 'LTA','468','SKJ','466','SWO','432','WAH','472','YFT','471')

 ORDER BY landing_date, se_vessel_id, species_name;

BEGIN
 IF GET_APPLICATION_PROPERTY(USERNAME) in ('ABERTOLI','JCRAMER') THEN
 OPEN se_curs;
 LOOP

FETCH se_curs INTO :recon_se_ne2.data_source, :recon_se_ne2.se_vessel_id,
 :recon_se_ne2.ne_hullnum, :recon_se_ne2.state_code,

 :recon_se_ne2.landing_date, :recon_se_ne2.species_code,
 :recon_se_ne2.species_name, :recon_se_ne2.pounds,

 :recon_se_ne2.se_trip_number, :recon_se_ne2.accsp_rec_num,
 :recon_se_ne2.match_results;

IF se_curs%NOTFOUND THEN
 NULL;

ELSE
BEGIN

 SELECT ABS(se_weight - ne_weight)
 INTO :recon_se_ne2.difference
 FROM se_ne_recon_t a
 WHERE :recon_se_ne2.match_results = '2' AND

 a.se_vessel =:recon_se_ne2.se_vessel_id AND
 a.se_state_code = :recon_se_ne2.state_code AND
 a.se_log_date = :recon_se_ne2.landing_date AND
 a.trip_number = :recon_se_ne2.se_trip_number AND
 a.se_species_code = :recon_se_ne2.species_code;
EXCEPTION

 WHEN NO_DATA_FOUND THEN
NULL;

END;
 NEXT_RECORD;

END IF;
 EXIT WHEN se_curs%NOTFOUND;
 END LOOP;
 CLOSE se_curs;

 ELSE

14

OPEN curs1;
 LOOP

FETCH curs1 INTO :recon_se_ne2.data_source, :recon_se_ne2.se_vessel_id,
 :recon_se_ne2.ne_hullnum, :recon_se_ne2.state_code,

 :recon_se_ne2.landing_date, :recon_se_ne2.species_code,
 :recon_se_ne2.species_name, :recon_se_ne2.pounds,

 :recon_se_ne2.se_trip_number, :recon_se_ne2.accsp_rec_num,
 :recon_se_ne2.match_results;

IF curs1%NOTFOUND THEN
 NULL;

ELSE
BEGIN

 SELECT ABS(se_weight - ne_weight)
 INTO :recon_se_ne2.difference
 FROM se_ne_recon_t a
 WHERE :recon_se_ne2.match_results = '2' AND

 a.se_vessel = :recon_se_ne2.se_vessel_id AND
 a.se_state_code = :recon_se_ne2.state_code AND
 a.se_log_date = :recon_se_ne2.landing_date AND
 a.trip_number = :recon_se_ne2.se_trip_number AND
 a.se_species_code = :recon_se_ne2.species_code;
EXCEPTION

 WHEN NO_DATA_FOUND THEN
NULL;

END;
 NEXT_RECORD;

END IF;
 EXIT WHEN curs1%NOTFOUND;
 END LOOP;
 CLOSE curs1;
 END IF;

 END recon_all_data_in;

All Records By Vessel Procedure

PROCEDURE all_data_in_byboat(year IN VARCHAR2, se_vessel_id IN VARCHAR2) IS
 CURSOR boat_curs IS
 SELECT data_source, ne_hullnum, state_code, landing_date, species_code,
 species_name, pounds, se_trip_number, accsp_rec_num, match_results
 FROM recon_se_ne
 WHERE substr(landing_date,1,4) = :recon_se_ne3.year AND

 se_vessel_id = :recon_se_ne3.se_vessel_id AND match_results IN ('2','3') AND
 species_code in ('ALB','470','BET','469','BLF','464','BON','033','DOL','105',

 'LTA','468','SKJ','466','SWO','432','WAH','472','YFT','471')
 ORDER BY landing_date, species_name;

15

BEGIN
 OPEN boat_curs;
 LOOP

FETCH boat_curs INTO :recon_se_ne3.data_source, :recon_se_ne3.ne_hullnum,
 :recon_se_ne3.state_code, :recon_se_ne3.landing_date,
 :recon_se_ne3.species_code, :recon_se_ne3.species_name,
 :recon_se_ne3.pounds, :recon_se_ne3.se_trip_number,
 :recon_se_ne3.accsp_rec_num, :recon_se_ne3.match_results;

IF boat_curs%NOTFOUND THEN
 NULL;

ELSE
 BEGIN

 SELECT ABS(se_weight - ne_weight)
 INTO :recon_se_ne3.differences
 FROM se_ne_recon_t a
 WHERE :recon_se_ne3.match_results = '2' AND

-- a.se_vessel = :recon_se_ne3.se_vessel_id AND
 a.se_state_code = :recon_se_ne3.state_code AND
 a.se_log_date = :recon_se_ne3.landing_date AND
 a.trip_number = :recon_se_ne3.se_trip_number AND
 a.se_species_code = :recon_se_ne3.species_code;

 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 NULL;
 END;
 NEXT_RECORD;

END IF;
 EXIT WHEN boat_curs%NOTFOUND;
 END LOOP;
 CLOSE boat_curs;

 END all_data_in_byboat;

16
Appendix C Monthly Script Processing

REM Copied from dls8, this script is pulling all trips and matching records
REM Updates state code in NEHMS table in order to do match from view
REM Also updates ne gears to match se gear codes.

UPDATE nehms
 set state_code = 'CT'
 where substr(port,1,2) = '07';

UPDATE nehms
 set state_code = 'DE'
 where substr(port,1,2) = '08';

UPDATE nehms
 set state_code = 'ME'
 where substr(port,1,2) = '22';

UPDATE nehms
 set state_code = 'MD'
 where substr(port,1,2) = '23';

UPDATE nehms
 set state_code = 'MA'
 where substr(port,1,2) = '24';

UPDATE nehms
 set state_code = 'NH'
 where substr(port,1,2) = '32';

UPDATE nehms
 set state_code = 'NJ'
 where substr(port,1,2) = '33';

UPDATE nehms
 set state_code = 'NY'
 where substr(port,1,2) = '35';

UPDATE nehms
 set state_code = 'NC'
 where substr(port,1,2) = '36';

UPDATE nehms
 set state_code = 'RI'
 where substr(port,1,2) = '42';

UPDATE nehms
 set state_code = 'VA'
 where substr(port,1,2) = '49';

17

REM NJ gave me problems with too many rows. Converting ne gear codes to SE

update nehms
 set segear = decode(negear,'110','GN','100','GN','020','HL','066','HL',

 '170','PT','030','HP','031','HP','010','LL','040','LL',
 '120','PS','121','PS','122','PS','123','PS','124','PS',
 '020','RR','180','TP','181','TP','182','TP',
 '183','TP','184','TP','185','TP','186','TP',
 '187','TP','188','TP','189','TP','190','TP',
 '191','TP','192','TP','193','TP','194','TP',
 '195','TP','196','TP','197','TP','198','TP',
 '199','TP','200','TP','201','TP','202','TP',
 '203','TP','204','TP','205','TP','206','TP',
 '207','TP','208','TP','209','TP','210','TP',
 '211','TP','212','TP','213','TP','214','TP',
 '215','TP','216','TP','217','TP',
 '050','TR','051','TR','052','TR','053','TR',
 '054','TR','055','TR','056','TR','057','TR',
 '058','TR','059','TR', null)

 where segear is null;

CREATE or REPLACE view se_ne_recon_v
 AS SELECT a.trip_number trip, a.gear_code gear, to_char(a.vessel_id) vessel,
 a.species_code species, b.nmfs_species_code nmfs_code,

 a.state_code, to_char(a.log_date) log_date,
sum(nvl(weight1,0) + nvl(weight2,0) + nvl(weight3,0) + nvl(weight4,0) +
nvl(weight5,0) + nvl(weight6,0) + nvl(weight7,0) + nvl(weight8,0) +
nvl(weight9,0) + nvl(weight10,0) + nvl(weight11,0) + nvl(weight12,0) +
nvl(weight13,0) + nvl(weight14,0) + nvl(weight15,0) + nvl(weight16,0) +
nvl(weight17,0) + nvl(weight18,0) + nvl(weight19,0) + nvl(weight20,0) +
nvl(weight21,0) + nvl(weight22,0) + nvl(weight23,0) + nvl(weight24,0) +
nvl(weight25,0) + nvl(weight26,0) + nvl(weight27,0) + nvl(weight28,0) +
nvl(weight29,0) + nvl(weight30,0) + nvl(weight31,0) + nvl(weight32,0)) weights,
to_char(c.cg_nmbr) matching_vessel, 'southeast' dbase
 FROM dls_longline a, dls_species_code b, se_cg9899 c
 WHERE a.species_code in ('SWO','YFT','BET','SKJ','ALB','BON','BLF',

 'LTA','WAH','DOL')
 AND a.species_code = b.dls_species_code
 AND a.vessel_id = c.dls_id(+)
 GROUP BY a.trip_number, a.vessel_id, a.species_code, b.nmfs_species_code,
 b.common_name, a.gear_code, a.state_code, a.log_date, c.cg_nmbr
UNION ALL
 SELECT '0000' trip, segear gear, a.hullnum vessel,
 substr(a.nespp4,1,3) species, b.nmfs_cd, state_code,
 year||month||day log_date, sum(spplndlb) weights,
 to_char(c.dls_id) matching_vessel, 'northeast' dbase

 FROM nehms a, ne_species b, se_cg9899 c
 WHERE a.nespp4 = b.nespp4 AND a.hullnum = to_char(c.cg_nmbr)
 GROUP BY a.hullnum, substr(a.nespp4,1,3), b.nmfs_cd, year||month||day,
 segear, state_code, c.dls_id;

18

REM Cursor set up to load 1 record at a time in to recon and meta table.

DECLARE
 CURSOR curs1 IS

SELECT trip_number, segear, negear, se_vessel, ne_hullnum,
 se_species_code, se_species_name, ne_species_code,

 ne_species_name, se_nmfs_code, ne_nmfs_code, se_state_code,
 ne_state_code, state_name, se_log_date, ne_landing_date,
 se_weight, ne_weight
FROM se_ne_recon_t;

 strip_number varchar2(10);
 ssegear varchar2(2);
 snegear varchar2(3);
 sse_vessel varchar2(5);
 sne_hullnum varchar2(10);
 sse_species_code varchar2(3);
 sse_species_name varchar2(30);
 sne_species_code varchar2(3);
 sne_species_name varchar2(30);
 sse_nmfs_code varchar2(4);
 sne_nmfs_code varchar2(4);
 sse_state_code varchar2(2);
 sne_state_code varchar2(2);
 sstate_name varchar2(30);
 sse_log_date varchar2(8);
 sne_landing_date varchar2(8);
 sse_weight number(6);
 sne_weight number(6);

BEGIN
 OPEN curs1;
 LOOP

FETCH curs1 INTO strip_number, ssegear, snegear, sse_vessel,
 sne_hullnum, sse_species_code, sse_species_name, sne_species_code,
 sne_species_name, sse_nmfs_code, sne_nmfs_code, sse_state_code,
 sne_state_code, sstate_name, sse_log_date, sne_landing_date,
 sse_weight, sne_weight;

 IF curs1%ROWCOUNT = 0 THEN
 close curs1;
 RAISE NO_DATA_FOUND;

 END IF;

 IF curs1%NOTFOUND THEN
 EXIT;
 END IF;

IF sse_weight = sne_weight AND sse_log_date = sne_landing_date AND
 sse_nmfs_code = sne_nmfs_code THEN
 INSERT INTO recon_se_ne(se_vessel_id, ne_hullnum, state_code,

landing_date, gear_code, species_code, species_name, pounds,
se_trip_number, data_source, match_results, reconciled_date)

 VALUES (sse_vessel, sne_hullnum, sse_state_code, sse_log_date,
 ssegear, sse_species_code, sse_species_name, sse_weight,
 strip_number, '1', '1', sysdate);

19
ELSIF
 sse_log_date = sne_landing_date AND
 sse_nmfs_code = sne_nmfs_code AND sse_weight > sne_weight THEN
 INSERT INTO recon_se_ne(se_vessel_id, ne_hullnum, state_code,

 landing_date, gear_code, species_code, species_name,
 pounds, se_trip_number, data_source, match_results,
 reconciled_date)

 VALUES (sse_vessel, sne_hullnum, sse_state_code, sse_log_date,
 ssegear, sse_species_code, sse_species_name, sse_weight,
 strip_number, '1', '2', sysdate);

/* This section puts the ne weight into the meta data table because it is the
 lesser of the weight values */

INSERT INTO recon_meta(trip_number, se_vessel_id, ne_hullnum,
 species_name, field_name, old_value, comments)

VALUES (strip_number, sse_vessel, sne_hullnum,
 sne_species_name, 'Pounds', sne_weight,

 'The southeast weight was the greater of the two records. The lesser of the weight values is
enter in the meta data table.');

 ELSIF
 sse_log_date = sne_landing_date AND
 sse_nmfs_code = sne_nmfs_code AND sse_weight < sne_weight THEN
 INSERT INTO recon_se_ne(se_vessel_id, ne_hullnum, state_code,

 landing_date, gear_code, species_code, species_name,
 pounds, se_trip_number, data_source, match_results,
 reconciled_date)

 VALUES (sse_vessel, sne_hullnum, sse_state_code, sse_log_date,
 ssegear, sse_species_code, sne_species_name, sne_weight,
 strip_number, '2', '2', sysdate);

/* This section puts the se weight in the meta data table because it is the
 lesser of the weight values in the meta table. */

INSERT INTO recon_meta(trip_number, se_vessel_id, ne_hullnum,
field_name, species_name, old_value, comments)

VALUES (strip_number, sse_vessel, sne_hullnum,
 'Pounds', sse_species_name, sse_weight,
 'The northeast weight was the greater of the two records. The lesser of the weight values is

enter in the meta data table.');

/* SE data exists, without northeast data to match. */

ELSIF
 sne_landing_date IS NULL THEN
 INSERT INTO recon_se_ne(se_vessel_id, state_code, landing_date,

gear_code, species_code, species_name, pounds,
se_trip_number, data_source, match_results)

 VALUES (sse_vessel, sse_state_code, sse_log_date, ssegear,
 sse_species_code, sse_species_name, sse_weight,
 strip_number, '1', '3');

20
/* NE data exists, without southeast data to match. */

ELSIF
 sse_log_date IS NULL THEN
 INSERT INTO recon_se_ne(ne_hullnum, state_code, landing_date,

species_code, species_name, pounds, data_source,
match_results)

 VALUES (sne_hullnum, sne_state_code, sne_landing_date,
 sne_species_code, sne_species_name, sne_weight, '2',

'3');

END IF;
EXIT WHEN curs1%NOTFOUND;

 END LOOP;
 CLOSE curs1;
END;
/
show errors;
commit;

21

